You've successfully subscribed to Intricate Art Spine & Body Solutions
Great! Next, complete checkout for full access to Intricate Art Spine & Body Solutions
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.
Success! Your billing info is updated.
Billing info update failed.
Dry Needling & Joint Manipulation for Athletic Trainers & Their Athletes:
An Absolute Necessity to Maximize Performance

Dry Needling & Joint Manipulation for Athletic Trainers & Their Athletes: An Absolute Necessity to Maximize Performance

Dry needling combined with joint manipulation is the most powerful tool on planet earth to rapidly improve neuromusculoskeletal performance and recovery from injury. There is no better way to optimize muscle length, improve blood flow, facilitate improved muscle firing patterns, increase nerve conduction velocity, and regulate the ANS toward homeostasis. Needling and joint manipulation allow the body to function at maximal output. Joints don’t move themselves; muscles and other external forces do. Joints also can’t move without moving muscles, even if there are no muscular attachments, like the scaphoid and Talus. Freakin weirdos. What kind of bones have no muscle attachments anyway? Slackers! Joints and soft tissue are intricately entangled and the function of one is highly dependent on the function of the other. For this reason, it is physiologically impossible for athletes to perform at their highest potential without regular intervention including dry needling and joint manipulation.

Dry needling and joint manipulation are potent tools on their own. However, when used together, their synergistic effects produce faster and far higher levels of healing than when used alone. High-level athletes abuse their bodies, and have their bodies abused, on a regular basis. Unless athletes have superpowers like Wolverine, which would be awesome, their bodies require constant attention to heal and perform at the highest level possible. With physical trauma, the sympathetic nervous system turns up, releasing norepinephrine, along with a cascade of other responses, readying the body for action. With any significant, lasting injury, or with enough small, minor injuries, the overall sum of negative afferent nerve signals to the brain crosses the individual threshold for maintaining normal systemic function. When this happens, every system in our body dysfunctions.

Thoughtfully performed needling combined with joint manipulation allows the body to utilize its awesome, innate ability to function and heal as well as it possibly can. Without needles, the only muscle treatment possible is indirect. The deeper the muscle or tissue, the more indirect the treatment. Needles, conversely, allow us to directly treat a large percentage of the soft tissue in the body. This is a key factor determining the efficacy and speed of treatment. Direct treatment is far more effective than indirect treatment.

Related: Click here for my blog on Dry Needling for Hockey Players

The most significant change these two techniques induce is ANS homeostasis. All mechanical pathology, such as periostitis, tendinopathy, chronic strains, capsular adhesions, etc., are secondary to dysfunction of our nervous systems, the ANS in particular. There can be no mechanical pathology without abnormal neurophysiologic function. Therefore, if athletes’ nervous systems are not being specifically targeted and treated on a regular basis, which must include needling and joint manipulation, our most potent tools, their performance will never be maximized.

Aside from being the best tools to quickly and effectively return the ANS to homeostasis, needling and joint manipulation are the fastest and most effective techniques to normalize and improve soft tissue. Trigger points, or knots in muscles, act just like a knot in a rope. The more knots you put in the rope, the shorter it gets. Trigger points are also capable of reducing over 90% of blood flowing through them. This leads to hypoxia, chemical imbalance, etc. Needling directly into trigger points is the best method to remove them. Looking at ultrasound, when the needle enters a trigger point, which is a hypercontracted group of sarcomeres, the whole thing dissolves or part of it dissolves. If part of it dissolves, entering the trigger point at different locations will dissolve the rest of it. This typically induces muscle twitching, but not always. Normalizing muscle length is one of the key, basic factors determining muscle performance.

Following soft tissue treatment with needles, joint manipulation becomes easier for the practitioner, more comfortable for the patient, and produces more effective and lasting results. Needling and manipulation have synergistic effects on depressing sympathetic and elevating parasympathetic activity. This synergy is amplified if you needle first, then manipulate. Needling reduces muscle tonicity, improves vascular and microvascular circulation, and improves capsular pliability. These factors allow a skilled manipulator to assess and feel for joint restrictions more accurately and perform a more effective manipulation. Needling prior to manipulation prepares the joint for complete reduction to neutral with minimal compressive forces on the joint. Without prior needling, muscles attaching to and crossing a pathologic joint are going to be tight. This compresses the joint, which is one of the most harmful chronic things a joint can experience. Manipulating a compressed joint increases shearing forces on discs and other collagenous structures. By first reducing muscle shortening and joint compression, you provide a joint the ability to move normally during and after a manipulation with minimal shearing forces.

Most AT’s, PT and OT’s are taught in school that you can achieve the same end-result on a joint, although more slowly, without achieving a cavitation, or “pop.” This is patently false and illustrates a complete lack of critical thinking about and understanding of neurophysiology. Tribonucleation is the physiologic process through which we experience the joint “popping” sound or cavitation. This occurs by stretching the joint capsule quickly enough to increase its internal volume without capsular accommodation. When you increase the volume of a container enclosing a liquid, like a joint capsule, the pressure inside the capsule drops. Decreased pressure on enclosed fluid (synovial fluid) allows molecules dissolved in said fluid to move around more, making them less soluble. So, by eliciting tribonucleation of the joint capsule we hear a “pop,” which is gas, most likely carbon dioxide and nitrogen, going from dissolved in fluid, to actual gas floating around above the fluid, inside the joint capsule. This is like sticking a ball pump needle into the capsule and pumping it up a few times, creating intracapsular joint distraction. It is so cool that we can now see this with real-time imaging!

This tension on the joint capsule from an air bubble forming inside the capsule stimulates a mechanotransducive neurophysiologic response, inhibiting soft tissue tonicity and tightness, while inducing endogenous opioid release, like beta-endorphin from the hypothalamic-pituitary-adrenal (HPA) axis. It also regulates and reduces pro-inflammatory markers such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a), and pro-inflammatory pathways, such as the Nrf2 pathway. Many of these mechanisms of action mimic, compliment, and amplify those of dry needling, creating a powerful synergy.

When dealing with high-level athletes, especially those making millions of dollars, it is baffling that 100% of pro sports teams do not have numerous practitioners who can skillfully needle and manipulate. They must be able to perform both. Utilizing different practitioners to perform each process is dreadfully less effective. You simply cannot treat properly if you rely on another person to do half the job. This leads to disjointed and suboptimal treatment. Dry needling and joint manipulation, when conjoined and implemented thoughtfully, are the two most powerful treatments we have to rapidly and effectively regulate neuromusculoskeletal function to allow for maximal athletic performance, mental and physical. Since these treatments have such potent homeostatic effects on the ANS, significant improvements in mental function are consistently induced, leading to amplified physical performance.

All high-level athletic teams should have full-time staff who excel at both dry needling and manipulation and understand how to use them to specifically target the ANS. Otherwise, facilitation of athletic performance to the highest potential is not attainable.

Thanks for reading. If you work for a university or athletic team and would like training in these subject areas, let me know and we will get something squared away. Let me know if anyone has any questions about anything. Talk to you soon.

Jason

References

Blood Perfusion

  • Ding, N., Jiang, J., Xu, A., Tang, Y. and Li, Z., 2019. Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer’s disease. Frontiers in neuroscience, 13, p.37.
  • Leszczynska, A., Ramm, L., Spoerl, E., Pillunat, L.E. and Terai, N., 2018. The short-term effect of acupuncture on different ocular blood flow parameters in patients with primary open-angle glaucoma: a randomized, clinical study. Clinical Ophthalmology (Auckland, NZ), 12, p.1285.
  • Su, Z., Yuan, Y., Yu, M., Liu, Y., Klein, J.D. and Wang, X.H., 2018. Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. American Journal of Physiology-Renal Physiology, 315(6), pp.F1542-F1549.
  • Pecchio, O., Martinelli, M., Lupi, G., Giardini, G., Caligiana, L., Bonin, S., Scalese, M., Salvetti, O., Moroni, D. and Bastiani, L., 2021. Acupuncture Effects on Cerebral Blood Flow during Normoxia and Normobaric Hypoxia: Results from a Prospective Crossover Pilot Study. Technologies, 9(4), p.102.
  • Lee, H.K., Moon, S.K., Jin, C., Cho, S.Y., Park, S.U., Jung, W.S., Park, J.M., Ko, C.N., Cho, K.H. and Kwon, S., 2021. Effects of GV14 Acupuncture on Cerebral Blood Flow Velocity in the Basilar and Middle Cerebral Arteries and CO2 Reactivity during Hypercapnia in Normal Individuals. Evidence-Based Complementary and Alternative Medicine, 2021.
  • Huang, A.C., Yeh, K.Y., Cheng, Y.Y., Dubey, N.K., Chiu, A.W. and Tsai, T.H., 2018. Investigation of interactive activity of electro-acupuncture on pharmacokinetics of sildenafil and their synergistic effect on penile blood flow in rats. International journal of molecular sciences, 19(8), p.2153.
  • Venturini, M., Piacentino, F., Coppola, A., Recaldini, C., Pacetti, S., Fontana, F. and Vannucci, V., 2021. Early Increase in Retinal Arterial and Venous Blood Flow Velocities on Color Doppler Ultrasound after Acupuncture. Ultraschall in der Medizin-European Journal of Ultrasound.
  • Zhang, L.L., Wang, Y.H., Song, X.L., Fan, X.N. and Wang, S., 2019. Effects of acupuncture on carotid intima-media thickness and cerebral blood flow velocity in patients with mild-to-moderate hypertension. Zhongguo zhen jiu= Chinese acupuncture & moxibustion, 39(7), pp.703-707.
  • Wang, H., Zhao, M., Zhang, J., Yan, B., Liu, S., Zhao, F., Guo, J. and Wang, F., 2022. The Efficacy of Acupuncture on Patients with Erectile Dysfunction: A Review. Evidence-Based Complementary and Alternative Medicine, 2022.

Muscle Contraction

  • Stojanovic, B., Svicevic, M., Kaplarevic-Malisic, A., Gilbert, R.J. and Mijailovich, S.M., 2020. Multi-scale striated muscle contraction model linking sarcomere length-dependent cross-bridge kinetics to macroscopic deformation. Journal of Computational Science, 39, p.101062.
  • Senneff, S. and Lowery, M.M., 2021. Effects of extracellular potassium on calcium handling and force generation in a model of excitation-contraction coupling in skeletal muscle. Journal of Theoretical Biology, 519, p.110656.
  • Carter, S. and Solomon, T.P., 2019. In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflügers Archiv-European Journal of Physiology, 471(3), pp.413-429.
  • Michailowsky, V., Li, H., Mittra, B., Iyer, S.R., Mazála, D.A.G., Corrotte, M., Wang, Y., Chin, E.R., Lovering, R.M. and Andrews, N.W., 2019. Defects in sarcolemma repair and skeletal muscle function after injury in a mouse model of Niemann-Pick type A/B disease. Skeletal muscle, 9(1), pp.1-15.
  • Stern, M.D., Pizarro, G. and Ríos, E., 1997. Local control model of excitation–contraction coupling in skeletal muscle. The Journal of general physiology, 110(4), pp.415-440.
  • Rebbeck, R.T., Karunasekara, Y., Board, P.G., Beard, N.A., Casarotto, M.G. and Dulhunty, A.F., 2014. Skeletal muscle excitation–contraction coupling: who are the dancing partners?. The international journal of biochemistry & cell biology, 48, pp.28-38.
  • Gong, G., Liu, X. and Wang, W., 2014. Regulation of metabolism in individual mitochondria during excitation–contraction coupling. Journal of molecular and cellular cardiology, 76, pp.235-246.
  • Qaisar, R., Bhaskaran, S., Premkumar, P., Ranjit, R., Natarajan, K.S., Ahn, B., Riddle, K., Claflin, D.R., Richardson, A., Brooks, S.V. and Van Remmen, H., 2018. Oxidative stress‐induced dysregulation of excitation–contraction coupling contributes to muscle weakness. Journal of cachexia, sarcopenia and muscle, 9(5), pp.1003-1017.
  • Hernández-Ochoa, E.O. and Schneider, M.F., 2018. Voltage sensing mechanism in skeletal muscle excitation-contraction coupling: coming of age or midlife crisis?. Skeletal muscle, 8(1), pp.1-20.
  • Squire, J.M., 2016. Muscle contraction: Sliding filament history, sarcomere dynamics and the two Huxleys. Global cardiology science & practice, 2016(2).
  • Rassier, D.E., 2017. Sarcomere mechanics in striated muscles: from molecules to sarcomeres to cells. American Journal of Physiology-Cell Physiology, 313(2), pp.C134-C145.
  • Powers, J.D., Malingen, S.A., Regnier, M. and Daniel, T.L., 2021. The sliding filament theory since Andrew Huxley: multiscale and multidisciplinary muscle research. Annual review of biophysics, 50, pp.373-400.
  • Nishikawa, K., Dutta, S., DuVall, M., Nelson, B., Gage, M.J. and Monroy, J.A., 2020. Calcium-dependent titin–thin filament interactions in muscle: observations and theory. Journal of Muscle Research and Cell Motility, 41(1), pp.125-139.

Pelvic Floor

  • Ferri-Morales, A., 2018. Posterior tibial nerve stimulation in the treatment of fecal incontinence: a systematic review. Rev Esp Enferm Dig, 110(9), pp.577-588.
  • Liu, B., Liu, Y., Qin, Z., Zhou, K., Xu, H., He, L., Li, N., Su, T., Sun, J., Yue, Z. and Zang, Z., 2019, January. Electroacupuncture versus pelvic floor muscle training plus solifenacin for women with mixed urinary incontinence: a randomized noninferiority trial. In Mayo Clinic Proceedings (Vol. 94, No. 1, pp. 54-65). Elsevier.
  • Wang, Y., Zhishun, L., Peng, W., Zhao, J. and Liu, B., 2013. Acupuncture for stress urinary incontinence in adults. Cochrane Database of Systematic Reviews, (7).
  • Itza, F., Zarza, D., Serra, L., Gomez-Sancha, F., Salinas, J. and Allona-Almagro, A., 2010. Myofascial pain syndrome in the pelvic floor: a common urological condition. Actas Urológicas Españolas (English Edition), 34(4), pp.318-326.
  • Kalichman, L. and Vulfsons, S., 2010. Dry needling in the management of musculoskeletal pain. The Journal of the American Board of Family Medicine, 23(5), pp.640-646.
  • Dunning, J., Butts, R., Mourad, F., Young, I., Flannagan, S. and Perreault, T., 2014. Dry needling: a literature review with implications for clinical practice guidelines. Physical therapy reviews, 19(4), pp.252-265.
  • Montenegro, M.L., Braz, C.A., Rosa-e-Silva, J.C., Candido-dos-Reis, F.J., Nogueira, A.A. and Poli-Neto, O.B., 2015. Anaesthetic injection versus ischemic compression for the pain relief of abdominal wall trigger points in women with chronic pelvic pain. BMC anesthesiology, 15(1), p.175.
  • Halle, J.S. and Halle, R.J., 2016. Pertinent dry needling considerations for minimizing adverse effects–part two. International journal of sports physical therapy, 11(5), p.810.
  • Zhong, D., Tang, W., Geng, D. and He, C., 2019. Efficacy and safety of acupuncture therapy for urinary incontinence in women: A systematic review and meta-analysis. Medicine, 98(40).
  • Zhang, Z., Wang, W., Song, Y., Zhai, T., Zhu, Y., Jiang, L., Li, Q., Jin, L., Li, K. and Feng, W., 2021. Immediate Effect of Dry Needling at Myofascial Trigger Point on Hand Spasticity in Chronic Post-stroke Patients: A Multicenter Randomized Controlled Trial. Frontiers in neurology, 12.
  • Sheikhhoseini, R. and Arab, A.M., 2018. Dry needling in myofascial tracks in non-relaxing pelvic floor dysfunction: A case study. Journal of Bodywork and Movement Therapies, 22(2), pp.337-340.
  • George, A., VanEtten, L. and Briggs, M., 2018. Dry Needling for Female Chronic Pelvic Pain: A Case Series. Journal of Women's Health Physical Therapy, 42(1), pp.8-16.
  • Lin, A., Abbas, H., Sultan, M. and Tzeng, T., 2022. A critical review of interventional treatments for myofascial pelvic pain.
  • Bubnov, R. and Kalika, L., Dry needling of trigger points under ultrasound guidance effective to treat chronic pelvic pain and pelvic prolapse.
  • Frederice, C.P., Brito, L.G.O., Pereira, G.M.V., Lunardi, A.L.B. and Juliato, C.R.T., 2021. Interventional treatment for myofascial pelvic floor pain in women: systematic review with meta-analysis. International Urogynecology Journal, 32(5), pp.1087-1096.
  • Rajkannan, P. and Vijayaraghavan, R., 2019. Dry needling in chronic abdominal wall pain of uncertain origin. Journal of Bodywork and Movement Therapies, 23(1), pp.94-98.
  • Alappattu, M., Hilton, S. and Bishop, M., 2019. An international survey of commonly used interventions for management of pelvic pain. Journal of women's health physical therapy, 43(2), p.82.
  • Bartley, J., Han, E., Gupta, P., Gaines, N., Killinger, K.A., Boura, J.A., Farrah, M., Gilleran, J., Sirls, L.T. and Peters, K.M., 2019. Transvaginal trigger point injections improve pain scores in women with pelvic floor hypertonicity and pelvic pain conditions. Female pelvic medicine & reconstructive surgery, 25(5), pp.392-396.
  • Hastings, J. and Machek, M., 2020. Pelvic Floor Dysfunction in Women. Current Physical Medicine and Rehabilitation Reports, 8(2), pp.64-75.
  • Bazzaz-Yamchi, M., Naghdi, S., Nakhostin-Ansari, A., Hadizadeh, M., Ansari, N.N., Moghimi, E. and Hasson, S., 2021. Acute and Short-Term Effects of Dry Needling in Patients with Chronic Nonspecific Low Back Pain and Hamstring Tightness: A Pilot Study. The Scientific World Journal, 2021.

Psychedelic-Assisted Psychotherapy

  • https://drdanengle.com
  • https://www.amazon.com/Dose-Hope-Story-MDMA-Assisted-Psychotherapy/dp/1544521022/ref=cm_cr_arp_d_product_top?ie=UTF8
  • https://www.kuya.life
  • Noller, G.E., Frampton, C.M. and Yazar-Klosinski, B., 2018. Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. The American journal of drug and alcohol abuse, 44(1), pp.37-46.
  • Davis, A.K., Barsuglia, J.P., Windham-Herman, A.M., Lynch, M. and Polanco, M., 2017. Subjective effectiveness of ibogaine treatment for problematic opioid consumption: short-and long-term outcomes and current psychological functioning. Journal of psychedelic studies, 1(2), pp.65-73.
  • Heink, A., Katsikas, S. and Lange-Altman, T., 2017. Examination of the phenomenology of the ibogaine treatment experience: Role of altered states of consciousness and psychedelic experiences. Journal of psychoactive drugs, 49(3), pp.201-208.
  • Mash, D.C., Duque, L., Page, B. and Allen-Ferdinand, K., 2018. Ibogaine detoxification transitions opioid and cocaine abusers between dependence and abstinence: clinical observations and treatment outcomes. Frontiers in pharmacology, 9, p.529.
  • Lotsof, H.S. and Alexander, N.E., 2001. Case studies of ibogaine treatment: implications for patient management strategies.
  • Sheppard, S.G., 1994. A preliminary investigation of ibogaine: case reports and recommendations for further study. Journal of substance abuse treatment, 11(4), pp.379-385.
  • Helsley, S., Dlugos, C.A., Pentney, R.J., Rabin, R.A. and Winter, J.C., 1997. Effects of chronic ibogaine treatment on cerebellar Purkinje cells in the rat. Brain research, 759(2), pp.306-308.
  • Binienda, Z., Beaudoin, M.A., Thorn, B.T., Prapurna, D.R., Johnson, J.R., Fogle, C.M., Slikker Jr, W. and Ali, S.F., 1998. Alteration in electroencephalogram and monoamine concentrations in rat brain following ibogaine treatment. Annals of the New York Academy of Sciences, 844(1), pp.265-273.
  • Belser, A.B., Agin-Liebes, G., Swift, T.C., Terrana, S., Devenot, N., Friedman, H.L., Guss, J., Bossis, A. and Ross, S., 2017. Patient experiences of psilocybin-assisted psychotherapy: an interpretative phenomenological analysis. Journal of Humanistic Psychology, 57(4), pp.354-388.
  • Carhart-Harris, R.L., Leech, R., Williams, T.M., Erritzoe, D., Abbasi, N., Bargiotas, T., Hobden, P., Sharp, D.J., Evans, J., Feilding, A. and Wise, R.G., 2012. Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin. The British Journal of Psychiatry, 200(3), pp.238-244.
  • Agin-Liebes, G.I., Malone, T., Yalch, M.M., Mennenga, S.E., Ponté, K.L., Guss, J., Bossis, A.P., Grigsby, J., Fischer, S. and Ross, S., 2020. Long-term follow-up of psilocybin-assisted psychotherapy for psychiatric and existential distress in patients with life-threatening cancer. Journal of Psychopharmacology, 34(2), pp.155-166.
  • Swift, T.C., Belser, A.B., Agin-Liebes, G., Devenot, N., Terrana, S., Friedman, H.L., Guss, J., Bossis, A.P. and Ross, S., 2017. Cancer at the dinner table: experiences of psilocybin-assisted psychotherapy for the treatment of cancer-related distress. Journal of Humanistic Psychology, 57(5), pp.488-519.
  • Carhart-Harris, R.L., Bolstridge, M., Day, C.M.J., Rucker, J., Watts, R., Erritzoe, D.E., Kaelen, M., Giribaldi, B., Bloomfield, M., Pilling, S. and Rickard, J.A., 2018. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology, 235(2), pp.399-408.
  • Reynolds, C.F., 2021. Psilocybin-Assisted Supportive Psychotherapy in the Treatment of Major Depression—Quo Vadis?. JAMA psychiatry, 78(5), pp.476-478.
  • Bogenschutz, M.P. and Forcehimes, A.A., 2017. Development of a psychotherapeutic model for psilocybin-assisted treatment of alcoholism. Journal of Humanistic Psychology, 57(4), pp.389-414.
  • Jones, J.L., Mateus, C.F., Malcolm, R.J., Brady, K.T. and Back, S.E., 2018. Efficacy of ketamine in the treatment of substance use disorders: a systematic review. Frontiers in psychiatry, 9, p.277.
  • Krupitsky, E., Burakov, A., Romanova, T., Dunaevsky, I., Strassman, R. and Grinenko, A., 2002. Ketamine psychotherapy for heroin addiction: immediate effects and two-year follow-up. Journal of substance abuse treatment, 23(4), pp.273-283.
  • Dore, J., Turnipseed, B., Dwyer, S., Turnipseed, A., Andries, J., Ascani, G., Monnette, C., Huidekoper, A., Strauss, N. and Wolfson, P., 2019. Ketamine assisted psychotherapy (KAP): patient demographics, clinical data and outcomes in three large practices administering ketamine with psychotherapy. Journal of psychoactive drugs, 51(2), pp.189-198.
  • Kolp, E., Friedman, H.L., Young, M.S. and Krupitsky, E., 2006. Ketamine enhanced psychotherapy: preliminary clinical observations on its effectiveness in treating alcoholism. The Humanistic Psychologist, 34(4), pp.399-422.
  • Kolp, E., Friedman, H.L., Krupitsky, E., Jansen, K., Sylvester, M., Young, M.S. and Kolp, A., 2014. Ketamine psychedelic psychotherapy: Focus on its pharmacology, phenomenology, and clinical applications. International Journal of Transpersonal Studies.
  • Radvansky, B.M., Puri, S., Sifonios, A.N., Eloy, J.D. and Le, V., 2016. Ketamine—a narrative review of its uses in medicine. American journal of therapeutics, 23(6), pp.e1414-e1426.
  • Feduccia, A.A., Jerome, L., Klosinski, B., Emerson, A., Mithoefer, M.C. and Doblin, R., 2019. Breakthrough for trauma treatment: safety and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Frontiers in psychiatry, 10, p.650.
  • Danforth, A.L., Grob, C.S., Struble, C., Feduccia, A.A., Walker, N., Jerome, L., Yazar-Klosinski, B. and Emerson, A., 2018. Reduction in social anxiety after MDMA-assisted psychotherapy with autistic adults: a randomized, double-blind, placebo-controlled pilot study. Psychopharmacology, 235(11), pp.3137-3148.
  • Jerome, L., Feduccia, A.A., Wang, J.B., Hamilton, S., Yazar-Klosinski, B., Emerson, A., Mithoefer, M.C. and Doblin, R., 2020. Long-term follow-up outcomes of MDMA-assisted psychotherapy for treatment of PTSD: a longitudinal pooled analysis of six phase 2 trials. Psychopharmacology, 237, pp.2485-2497.
  • Thal, S.B. and Lommen, M.J., 2018. Current perspective on MDMA-assisted psychotherapy for posttraumatic stress disorder. Journal of contemporary psychotherapy, 48(2), pp.99-108.
  • Wagner, M.T., Mithoefer, M.C., Mithoefer, A.T., MacAulay, R.K., Jerome, L., Yazar-Klosinski, B. and Doblin, R., 2017. Therapeutic effect of increased openness: Investigating mechanism of action in MDMA-assisted psychotherapy. Journal of Psychopharmacology, 31(8), pp.967-974.
  • Schmid, Y., Gasser, P., Oehen, P. and Liechti, M.E., 2021. Acute subjective effects in LSD-and MDMA-assisted psychotherapy. Journal of Psychopharmacology, 35(4), pp.362-374.
  • Gorman, I., Belser, A.B., Jerome, L., Hennigan, C., Shechet, B., Hamilton, S., Yazar‐Klosinski, B., Emerson, A. and Feduccia, A.A., 2020. Posttraumatic growth after MDMA‐assisted psychotherapy for posttraumatic stress disorder. Journal of traumatic stress, 33(2), pp.161-170.

Neural Plasticity

  • Dommerholt, J., Mayoral del Moral, O. and Gröbli, C., 2006. Trigger point dry needling. Journal of Manual & Manipulative Therapy, 14(4), pp.70E-87E.
  • Calvo, S., Navarro, J., Herrero, P., Del Moral, R., De Diego, C. and Marijuán, P.C., 2015. Electroencephalographic changes after application of dry needling [DNHS© technique] in two patients with chronic stroke. Myopain, 23(3-4), pp.112-117.
  • Hsieh, Y.L., Yang, C.C., Liu, S.Y., Chou, L.W. and Hong, C.Z., 2014. Remote dose-dependent effects of dry needling at distant myofascial trigger spots of rabbit skeletal muscles on reduction of substance P levels of proximal muscle and spinal cords. BioMed Research International, 2014.
  • Sollie, M., Pind, R., Madsen, C.B. and Sørensen, J.A., 2021. Acupuncture (superficial dry-needling) as a treatment for chronic postherpetic neuralgia–a randomized clinical trial. British Journal of Pain, p.20494637211023075.
  • Ren, L., Zhang, W.A., Fang, N.Y. and Wang, J.X., 2008. The influence of electro-acupuncture on neural plasticity in acute cerebral infarction. Neurological research, 30(9), pp.985-989.
  • Xiao, L.Y., Wang, X.R., Yang, Y., Yang, J.W., Cao, Y., Ma, S.M., Li, T.R. and Liu, C.Z., 2018. Applications of acupuncture therapy in modulating plasticity of central nervous system. Neuromodulation: Technology at the Neural Interface, 21(8), pp.762-776
  • Lo, Y.L., Cui, S.L. and Fook-Chong, S., 2005. The effect of acupuncture on motor cortex excitability and plasticity. Neuroscience letters, 384(1-2), pp.145-149.
  • Liu, C.Z., Kong, J. and Wang, K., 2017. Acupuncture therapies and neuroplasticity. Neural plasticity, 2017, p.6178505.
  • Li, X. and Wang, Q., 2013. Acupuncture therapy for stroke patients. International review of neurobiology, 111, pp.159-179.
  • Kong, J., Gollub, R., Huang, T., Polich, G., Napadow, V., Hui, K., Vangel, M., Rosen, B. and Kaptchuk, T.J., 2007. Acupuncture de qi, from qualitative history to quantitative measurement. The Journal of Alternative and Complementary Medicine, 13(10), pp.1059-1070.
  • Lee, J.D., Chon, J.S., Jeong, H.K., Kim, H.J., Yun, M., Kim, D.Y., Kim, D.I., Park, C.I. and Yoo, H.S., 2003. The cerebrovascular response to traditional acupuncture after stroke. Neuroradiology, 45(11), pp.780-784.
  • Yang, Y., Eisner, I., Chen, S., Wang, S., Zhang, F. and Wang, L., 2017. Neuroplasticity changes on human motor cortex induced by acupuncture therapy: a preliminary study. Neural plasticity, 2017.
  • Jiang, H., Zhang, X., Wang, Y., Zhang, H., Li, J., Yang, X., Zhao, B., Zhang, C., Yu, M., Xu, M. and Yu, Q., 2017. Mechanisms underlying the antidepressant response of acupuncture via PKA/CREB signaling pathway. Neural Plasticity, 2017.
  • Tang, H., Guo, Y., Zhao, Y., Wang, S., Wang, J., Li, W., Qin, S., Gong, Y., Fan, W., Chen, Z. and Guo, Y., 2020. Effects and Mechanisms of Acupuncture Combined with Mesenchymal Stem Cell Transplantation on Neural Recovery after Spinal Cord Injury: Progress and Prospects. Neural Plasticity, 2020.
  • Lai, H.C., Chang, Q.Y. and Hsieh, C.L., 2019. Signal transduction pathways of acupuncture for treating some nervous system diseases. Evidence-Based Complementary and Alternative Medicine, 2019.
  • Pirnia, B., Bazargan, N.M., Hamdieh, M., Pirnia, K., Malekanmehr, P., Maleki, F. and Zahiroddin, A., 2019. The Effectiveness of Auricular Acupuncture on the Levels of Cortisol in a Depressed Patient. Iranian journal of public health, 48(9), pp.1748-1750.
  • Yang, J.W., Ye, Y., Wang, X.R., Li, F., Xiao, L.Y., Shi, G.X. and Liu, C.Z., 2017. Acupuncture attenuates renal sympathetic activity and blood pressure via beta-adrenergic receptors in spontaneously hypertensive rats. Neural plasticity, 2017.
  • Ye, Y., Zhu, W., Wang, X.R., Yang, J.W., Xiao, L.Y., Liu, Y., Zhang, X. and Liu, C.Z., 2017. Mechanisms of acupuncture on vascular dementia—a review of animal studies. Neurochemistry international, 107, pp.204-210.
  • Li, Y., Wang, Y., Liao, C., Huang, W. and Wu, P., 2017. Longitudinal brain functional connectivity changes of the cortical motor-related network in subcortical stroke patients with acupuncture treatment. Neural plasticity, 2017.
  • Wang, T., Wu, L., Liao, D., Zhou, X., Chen, Y. and Takeda, A., 2002. Effect of acupuncture on the expression of NT3 in the process of spinal plasticity. Hua xi yi ke da xue xue bao= Journal of West China University of Medical Sciences= Huaxi yike daxue xuebao, 33(1), pp.46-49.

B-endorphin

  • Bernstein, H.G., Dobrowolny, H., Bogerts, B., Keilhoff, G. and Steiner, J., 2019. The hypothalamus and neuropsychiatric disorders: psychiatry meets microscopy. Cell and tissue research, 375(1), pp.243-258.
  • Roschina, O.V., Levchuk, L.A., Boiko, A.S., Michalitskaya, E.V., Epimakhova, E.V., Losenkov, I.S., Simutkin, G.G., Loonen, A.J., Bokhan, N.A. and Ivanova, S.A., 2021. Beta-Endorphin and Oxytocin in Patients with Alcohol Use Disorder and Comorbid Depression. Journal of Clinical Medicine, 10(23), p.5696.
  • Rocchi, G., Sterlini, B., Tardito, S., Inglese, M., Corradi, A., Filaci, G., Amore, M., Magioncalda, P. and Martino, M., 2020. Opioidergic system and functional architecture of intrinsic brain activity: implications for psychiatric disorders. The Neuroscientist, 26(4), pp.343-358.
  • Lu, Y., Ann, L. and McCarron, R., 2021. Steroid-induced psychiatric symptoms: What you need to know. Current Psychiatry, 20(4), p.33.
  • Maslov, M.Y., Foianini, S., Orlov, M.V., Januzzi, J.L. and Lovich, M.A., 2018. A novel paradigm for sacubitril/valsartan: beta-endorphin elevation as a contributor to exercise tolerance improvement in rats with preexisting heart failure induced by pressure overload. Journal of cardiac failure, 24(11), pp.773-782.
  • van der Venne, P., Balint, A., Drews, E., Parzer, P., Resch, F., Koenig, J. and Kaess, M., 2021. Pain sensitivity and plasma beta-endorphin in adolescent non-suicidal self-injury. Journal of Affective Disorders, 278, pp.199-208.
  • Furness, J.B., 2000. Types of neurons in the enteric nervous system. Journal of the autonomic nervous system, 81(1-3), pp.87-96.
  • McCullough, J.E., Liddle, S.D., Close, C., Sinclair, M. and Hughes, C.M., 2018. Reflexology: a randomised controlled trial investigating the effects on beta-endorphin, cortisol and pregnancy related stress. Complementary therapies in clinical practice, 31, pp.76-84.
  • Maslov, M.Y., Foianini, S., Orlov, M.V., Januzzi, J.L. and Lovich, M.A., 2018. A novel paradigm for sacubitril/valsartan: beta-endorphin elevation as a contributor to exercise tolerance improvement in rats with preexisting heart failure induced by pressure overload. Journal of cardiac failure, 24(11), pp.773-782.
  • Cui, L., Cai, H., Sun, F., Wang, Y., Qu, Y., Dong, J., Wang, H., Li, J., Qian, C. and Li, J., 2021. Beta-endorphin inhibits the inflammatory response of bovine endometrial cells through δ opioid receptor in vitro. Developmental & Comparative Immunology, 121, p.104074.

Enteric Nervous System, Gut-Brain Axis

  • Furness, J.B., 2012. The enteric nervous system and neurogastroenterology. Nature reviews Gastroenterology & hepatology, 9(5), pp.286-294.
  • Spencer, N.J. and Hu, H., 2020. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nature Reviews Gastroenterology & Hepatology, 17(6), pp.338-351
  • Drokhlyansky, E., Smillie, C.S., Van Wittenberghe, N., Ericsson, M., Griffin, G.K., Eraslan, G., Dionne, D., Cuoco, M.S., Goder-Reiser, M.N., Sharova, T. and Kuksenko, O., 2020. The human and mouse enteric nervous system at single-cell resolution. Cell, 182(6), pp.1606-1622.
  • Heiss, C.N. and Olofsson, L.E., 2019. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. Journal of neuroendocrinology, 31(5), p.e12684.
  • Fung, C. and Vanden Berghe, P., 2020. Functional circuits and signal processing in the enteric nervous system. Cellular and Molecular Life Sciences, 77, pp.4505-4522.
  • De Vadder, F., Grasset, E., Holm, L.M., Karsenty, G., Macpherson, A.J., Olofsson, L.E. and Bäckhed, F., 2018. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proceedings of the National Academy of Sciences, 115(25), pp.6458-6463.
  • Niesler, B., Kuerten, S., Demir, I.E. and Schäfer, K.H., 2021. Disorders of the enteric nervous system—a holistic view. Nature Reviews Gastroenterology & Hepatology, 18(6), pp.393-410.
  • Mayer, E.A., Tillisch, K. and Gupta, A., 2015. Gut/brain axis and the microbiota. The Journal of clinical investigation, 125(3), pp.926-938.
  • Cryan, J.F., O'Riordan, K.J., Cowan, C.S., Sandhu, K.V., Bastiaanssen, T.F., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A.V. and Guzzetta, K.E., 2019. The microbiota-gut-brain axis. Physiological reviews.
  • Ma, Q., Xing, C., Long, W., Wang, H.Y., Liu, Q. and Wang, R.F., 2019. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of neuroinflammation, 16(1), pp.1-14.
  • Bonaz, B., Bazin, T. and Pellissier, S., 2018. The vagus nerve at the interface of the microbiota-gut-brain axis. Frontiers in neuroscience, 12, p.49.
  • Benakis, C., Martin-Gallausiaux, C., Trezzi, J.P., Melton, P., Liesz, A. and Wilmes, P., 2020. The microbiome-gut-brain axis in acute and chronic brain diseases. Current opinion in neurobiology, 61, pp.1-9.
  • Kim, N., Yun, M., Oh, Y.J. and Choi, H.J., 2018. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics. Journal of Microbiology, 56(3), pp.172-182.
  • Tan, H.E., Sisti, A.C., Jin, H., Vignovich, M., Villavicencio, M., Tsang, K.S., Goffer, Y. and Zuker, C.S., 2020. The gut–brain axis mediates sugar preference. Nature, 580(7804), pp.511-516.
    Vagus Nerve Stimulation
  • Sprouse-Blum, A.S., Smith, G., Sugai, D. and Parsa, F.D., 2010. Understanding endorphins and their importance in pain management. Hawaii medical journal, 69(3), p.70.
  • Usichenko, T.I., Dinse, M., Hermsen, M., Witstruck, T., Pavlovic, D. and Lehmann, C., 2005. Auricular acupuncture for pain relief after total hip arthroplasty–a randomized controlled study. Pain, 114(3), pp.320-327.
  • Usichenko, T.I., Kuchling, S., Witstruck, T., Pavlovic, D., Zach, M., Hofer, A., Merk, H., Lehmann, C. and Wendt, M., 2007. Auricular acupuncture for pain relief after ambulatory knee surgery: a randomized trial. Cmaj, 176(2), pp.179-183.
  • Jaić, K.K., Turković, T.M., Pešić, M., Djaković, I., Košec, V. and Košec, A., 2019. Auricular acupuncture as effective pain relief after episiotomy: a randomized controlled pilot study. Archives of gynecology and obstetrics, 300(5), pp.1295-1301
  • Taylor, S.L., Giannitrapani, K.F., Ackland, P.E., Thomas, E.R., Federman, D.G., Holliday, J.R., Olson, J., Kligler, B. and Zeliadt, S.B., 2021. The Implementation and Effectiveness of Battlefield Auricular Acupuncture for Pain. Pain Medicine.
  • Shah, A.N., Moore, C.B. and Brigger, M.T., 2020. Auricular acupuncture for adult tonsillectomy. The Laryngoscope, 130(8), pp.1907-1912.
  • Garner, B.K., Hopkinson, S.G., Ketz, A.K., Landis, C.A. and Trego, L.L., 2018. Auricular acupuncture for chronic pain and insomnia: a randomized clinical trial. Medical acupuncture, 30(5), pp.262-272.
  • Kang, H.R., Lee, Y.S., Kim, H.R., Kim, E.J., Kim, K.H., Kim, K.S., Jung, C.Y. and Lee, J.K., 2017. A clinical study of electroacupuncture and auricular acupuncture for abdominal pain relief in patients with pancreatitis: A pilot study. Korean Journal of Acupuncture, 34(1), pp.47-55.
  • Moura, C.D.C., Chaves, E.D.C.L., Cardoso, A.C.L.R., Nogueira, D.A., Azevedo, C. and Chianca, T.C.M., 2019. Auricular acupuncture for chronic back pain in adults: a systematic review and metanalysis. Revista da Escola de Enfermagem da USP, 53.
  • Tsai, S.L., Fox, L.M., Murakami, M. and Tsung, J.W., 2016. Auricular acupuncture in emergency department treatment of acute pain. Annals of emergency medicine, 68(5), pp.583-585.
  • Yeh, C.H., Chiang, Y.C., Hoffman, S.L., Liang, Z., Klem, M.L., Tam, W.W., Chien, L.C. and Suen, L.K.P., 2014. Efficacy of auricular therapy for pain management: a systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2014.
  • Sator-Katzenschlager, S.M., Szeles, J.C., Scharbert, G., Michalek-Sauberer, A., Kober, A., Heinze, G. and Kozek-Langenecker, S.A., 2003. Electrical stimulation of auricular acupuncture points is more effective than conventional manual auricular acupuncture in chronic cervical pain: a pilot study. Anesthesia & Analgesia, 97(5), pp.1469-1473.
  • Usichenko, T.I., Lehmann, C. and Ernst, E., 2008. Auricular acupuncture for postoperative pain control: a systematic review of randomised clinical trials. Anaesthesia, 63(12), pp.1343-1348.
  • Johnson, R.L. and Wilson, C.G., 2018. A review of vagus nerve stimulation as a therapeutic intervention. Journal of inflammation research, 11, p.203.

Neurologic Conditions, Including TBI & CVA

  • Ghayour Najafabadi, M., Shariat, A., Dommerholt, J., Hakakzadeh, A., Nakhostin-Ansari, A., Selk-Ghaffari, M., Ingle, L. and Cleland, J.A., 2021. Aquatic Therapy for improving Lower Limbs Function in Post-stroke Survivors: A Systematic Review with Meta-Analysis. Topics in Stroke Rehabilitation, pp.1-17.
  • Pourahmadi, M., Dommerholt, J., Fernández-de-Las-Peñas, C., Koes, B.W., Mohseni-Bandpei, M.A., Mansournia, M.A., Delavari, S., Keshtkar, A. and Bahramian, M., 2021. Dry needling for the treatment of tension-type, cervicogenic, or migraine headaches: A systematic review and meta-analysis. Physical Therapy, 101(5), p.pzab068.
  • Fernández-de-Las-Peñas, C., Pérez-Bellmunt, A., Llurda-Almuzara, L., Plaza-Manzano, G., De-la-Llave-Rincón, A.I. and Navarro-Santana, M.J., 2021. Is Dry Needling Effective for the Management of Spasticity, Pain, and Motor Function in Post-Stroke Patients? A Systematic Review and Meta-Analysis. Pain Medicine, 22(1), pp.131-141.
  • Sánchez-Mila, Z., Salom-Moreno, J. and Fernández-de-Las-Peñas, C., 2018. Effects of dry needling on post-stroke spasticity, motor function and stability limits: a randomised clinical trial. Acupuncture in Medicine, 36(6), pp.358-366.
  • Mendigutia-Gómez, A., Martín-Hernández, C., Salom-Moreno, J. and Fernández-de-Las-Peñas, C., 2016. Effect of dry needling on spasticity, shoulder range of motion, and pressure pain sensitivity in patients with stroke: A crossover study. Journal of manipulative and physiological therapeutics, 39(5), pp.348-358.
  • Mendigutía-Gómez, A., Quintana-García, M.T., Martín-Sevilla, M., de Lorenzo-Barrientos, D., Rodríguez-Jiménez, J., Fernández-de-Las-Peñas, C. and Arias-Buría, J.L., 2020. Post-needling soreness and trigger point dry needling for hemiplegic shoulder pain following stroke. Acupuncture in Medicine, 38(3), pp.150-157.
  • Valencia-Chulián, R., Heredia-Rizo, A.M., Moral-Munoz, J.A., Lucena-Anton, D. and Luque-Moreno, C., 2020. Dry needling for the management of spasticity, pain, and range of movement in adults after stroke: A systematic review. Complementary Therapies in Medicine, 52, p.102515.
  • Calvo, S., Navarro, J., Herrero, P., Del Moral, R., De Diego, C. and Marijuán, P.C., 2015. Electroencephalographic changes after application of dry needling [DNHS© technique] in two patients with chronic stroke. Myopain, 23(3-4), pp.112-117.
  • Cuenca Zaldívar, J.N., Calvo, S., Bravo-Esteban, E., Oliva Ruiz, P., Santi-Cano, M.J. and Herrero, P., 2020. Effectiveness of dry needling for upper extremity spasticity, quality of life and function in subacute phase stroke patients. Acupuncture in Medicine, p.0964528420947426.
  • Hernández-Ortíz, A.R., Ponce-Luceño, R., Sáez-Sánchez, C., García-Sánchez, O., Fernández-de-Las-Peñas, C. and de-la-Llave-Rincón, A.I., 2020. Changes in muscle tone, function, and pain in the chronic hemiparetic shoulder after dry needling within or outside trigger points in stroke patients: A crossover randomized clinical trial. Pain Medicine, 21(11), pp.2939-2947.
  • Tavakol, Z., Shariat, A., Ansari, N.N., Ghannadi, S., Honarpishe, R., Dommerholt, J., Noormohammadpour, P. and Ingle, L., 2021. A Double-blind Randomized Controlled Trial for the Effects of Dry Needling on Upper Limb Dysfunction in Patients with Stroke. Acupuncture & Electro-Therapeutics Research, 45(2-3), pp.115-124.
  • Ghaffari, M.S., Shariat, A., Honarpishe, R., Hakakzadeh, A., Cleland, J.A., Haghighi, S. and Barghi, T.S., 2019. Concurrent effects of dry needling and electrical stimulation in the management of upper extremity hemiparesis. Journal of acupuncture and meridian studies, 12(3), pp.90-94.
  • Ghannadi, S., Shariat, A., Ansari, N.N., Tavakol, Z., Honarpishe, R., Dommerholt, J., Noormohammadpour, P. and Ingle, L., 2020. The effect of dry needling on lower limb dysfunction in poststroke survivors. Journal of Stroke and Cerebrovascular Diseases, 29(6), p.104814.
  • Bynum, R., Garcia, O., Herbst, E., Kossa, M., Liou, K., Cowan, A. and Hilton, C., 2021. Effects of dry needling on spasticity and range of motion: a systematic review. American Journal of Occupational Therapy, 75(1), pp.7501205030p1-7501205030p13.
  • DiLorenzo, L., Traballesi, M., Morelli, D., Pompa, A., Brunelli, S., Buzzi, M.G. and Formisano, R., 2004. Hemiparetic shoulder pain syndrome treated with deep dry needling during early rehabilitation: a prospective, open-label, randomized investigation. Journal of Musculoskeletal Pain, 12(2), pp.25-34.
  • Carusotto, A.F., Hakim, R.M., Oliveira, R.G., Piranio, A., Coughlan, C.P. and MacDonald, T.J., 2021. Effects of dry needling on muscle spasticity in adults with neurological disorders: a systematic review. Physical Therapy Reviews, pp.1-6.
  • Sánchez-Mila, Z., Salom-Moreno, J. and Fernández-de-Las-Peñas, C., 2018. Effects of dry needling on post-stroke spasticity, motor function and stability limits: a randomised clinical trial. Acupuncture in Medicine, 36(6), pp.358-366.
  • Salom-Moreno, J., Sánchez-Mila, Z., Ortega-Santiago, R., Palacios-Ceña, M., Truyol-Domínguez, S. and Fernández-de-las-Peñas, C., 2014. Changes in spasticity, widespread pressure pain sensitivity, and baropodometry after the application of dry needling in patients who have had a stroke: A randomized controlled trial. Journal of manipulative and physiological therapeutics, 37(8), pp.569-579.
  • Valencia-Chulián, R., Heredia-Rizo, A.M., Moral-Munoz, J.A., Lucena-Anton, D. and Luque-Moreno, C., 2020. Dry needling for the management of spasticity, pain, and range of movement in adults after stroke: A systematic review. Complementary Therapies in Medicine, 52, p.102515.
  • Núñez-Cortés, R., Cruz-Montecinos, C., Latorre-García, R., Pérez-Alenda, S. and Torres-Castro, R., 2020. Effectiveness of Dry Needling in the Management of Spasticity in Patients Post Stroke. Journal of Stroke and Cerebrovascular Diseases, 29(11), p.105236.
  • Bynum, R., Garcia, O., Herbst, E., Kossa, M., Liou, K., Cowan, A. and Hilton, C., 2021. Effects of dry needling on spasticity and range of motion: a systematic review. American Journal of Occupational Therapy, 75(1), pp.7501205030p1-7501205030p13.

Electrical Needling

  • Dunning, J., Butts, R., Henry, N., Mourad, F., Brannon, A., Rodriguez, H., Young, I., Arias-Buría, J.L. and Fernández-de-Las-Peñas, C., 2018. Electrical dry needling as an adjunct to exercise, manual therapy and ultrasound for plantar fasciitis: A multi-center randomized clinical trial. PloS one, 13(10), p.e0205405.
  • Dunning, J., Butts, R., Zacharko, N., Fandry, K., Young, I., Wheeler, K., Day, J. and Fernández-de-Las-Peñas, C., 2021. Spinal manipulation and perineural electrical dry needling in patients with cervicogenic headache: a multicenter randomized clinical trial. The Spine Journal, 21(2), pp.284-295.
  • Ghaffari, M.S., Shariat, A., Honarpishe, R., Hakakzadeh, A., Cleland, J.A., Haghighi, S. and Barghi, T.S., 2019. Concurrent effects of dry needling and electrical stimulation in the management of upper extremity hemiparesis. Journal of acupuncture and meridian studies, 12(3), pp.90-94.
  • Brennan, K., Elifritz, K.M., Comire, M.M. and Jupiter, D.C., 2021. Rate and maintenance of improvement of myofascial pain with dry needling alone vs. dry needling with intramuscular electrical stimulation: a randomized controlled trial. Journal of Manual & Manipulative Therapy, 29(4), pp.216-226.
  • Fernández-Carnero, J., 2021. Effectiveness of Dry Needling with Percutaneous Electrical Nerve Stimulation of High Frequency Versus Low Frequency in Patients with Myofascial Neck Pain. Pain physician, 24, pp.135-143.
  • WALSH, S., GOULT, C. and GILLETT, B., 2021. Spinal Manipulation and Electrical Dry Needling in Patients With Subacromial Pain Syndrome: A Multicenter Randomized Clinical Trial. journal of orthopaedic & sports physical therapy, 51(2), p.73.
  • Dunning, J., 2019. Effectiveness of Electrical Dry Needling for Lower Extremity Pain Disorders.
  • Hadizadeh, M., Tajali, S.B., Moghadam, B.A., Jalaei, S. and Bazzaz, M., 2022. Effects of Intramuscular Electrical Stimulation through Dry Needling on Pain and Dysfunction Following Trigger Points in Upper Trapezius Muscle: A Double-blind Randomized Controlled Trial. Journal of Modern Rehabilitation.
  • Ahmed, A.F., Elgayed, S.S. and Ibrahim, I.M., 2012. Polarity effect of microcurrent electrical stimulation on tendon healing: biomechanical and histopathological studies. Journal of Advanced Research, 3(2), pp.109-117.
  • Yazdan-Shahmorad, A., Kipke, D.R. and Lehmkuhle, M.J., 2011. Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex. Brain stimulation, 4(4), pp.228-241.
  • Gentzkow, G.D., 1993. Electrical stimulation to heal dermal wounds. The Journal of dermatologic surgery and oncology, 19(8), pp.753-758.
  • Hayashi, K. and Ninjouji, T., 2004, September. Two-point discrimination threshold as a function of frequency and polarity at fingertip by electrical stimulation. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2, pp. 4256-4259). IEEE.
  • Demir, H., Balay, H. and Kirnap, M., 2004. A comparative study of the effects of electrical stimulation and laser treatment on experimental wound healing in rats. Journal of rehabilitation Research & development, 41(2).
  • Balakatounis, K.C. and Angoules, A.G., 2008. Low-intensity electrical stimulation in wound healing: review of the efficacy of externally applied currents resembling the current of injury. Eplasty, 8.
  • Ashrafi, M., Alonso‐Rasgado, T., Baguneid, M. and Bayat, A., 2016. The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals. Veterinary dermatology, 27(4), pp.235-e57.
  • Krause, B. and Cohen Kadosh, R., 2014. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in systems neuroscience, 8, p.25.
  • Asadi, M.R., Torkaman, G. and Hedayati, M., 2011. Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound. J Rehabil Res Dev, 48(3), pp.195-201.
  • Deriu, F., Tolu, E. and Rothwell, C., 2003. A short latency vestibulomasseteric reflex evoked by electrical stimulation over the mastoid in healthy humans. The Journal of physiology, 553(1), pp.267-279.
  • Wang, J., Wang, H., Thakor, N.V. and Lee, C., 2019. Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS nano, 13(3), pp.3589-3599.
  • Nussbaum, E.L., Houghton, P., Anthony, J., Rennie, S., Shay, B.L. and Hoens, A.M., 2017. Neuromuscular electrical stimulation for treatment of muscle impairment: critical review and recommendations for clinical practice. Physiotherapy Canada, 69(5), pp.1-76.
  • Asadi, M.R. and Torkaman, G., 2014. Bacterial inhibition by electrical stimulation. Advances in wound care, 3(2), pp.91-97.
  • Snyder, A.R., Perotti, A.L., Lam, K.C. and Bay, R.C., 2010. The influence of high-voltage electrical stimulation on edema formation after acute injury: a systematic review. Journal of sport rehabilitation, 19(4), pp.436-451.
  • Feger, M.A., Goetschius, J., Love, H., Saliba, S.A. and Hertel, J., 2015. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review. Physical Therapy in Sport, 16(4), pp.361-369.
  • Hamid, S. and Hayek, R., 2008. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. European Spine Journal, 17(9), pp.1256-1269.
  • Reilly, J.P., 2012. Applied bioelectricity: from electrical stimulation to electropathology. Springer Science & Business Media.
  • Gordon, T., Amirjani, N., Edwards, D.C. and Chan, K.M., 2010. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Experimental neurology, 223(1), pp.192-202.
  • Hwang, I.H. and Thompson, J.M., 2001. The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat science, 58(2), pp.135-144.

Orthopedic Conditions

  • Clark, N.G., Hill, C.J., Koppenhaver, S.L., Massie, T. and Cleland, J.A., 2021. The effects of dry needling to the thoracolumbar junction multifidi on measures of regional and remote flexibility and pain sensitivity: A randomized controlled trial. Musculoskeletal Science and Practice, 53, p.102366.
  • Navarro-Santana, M.J., Gómez-Chiguano, G.F., Cleland, J.A., Arias-Buría, J.L., Fernández-de-Las-Peñas, C. and Plaza-Manzano, G., 2021. Effects of Trigger Point Dry Needling for Nontraumatic Shoulder Pain of Musculoskeletal Origin: A Systematic Review and Meta-Analysis. Physical Therapy, 101(2), p.pzaa216.
  • Ma, Y.T., Li, L.H., Han, Q., Wang, X.L., Jia, P.Y., Huang, Q.M. and Zheng, Y.J., 2020. Effects of trigger point dry needling on neuromuscular performance and pain of individuals affected by patellofemoral pain: a randomized controlled trial. Journal of Pain Research, 13, p.1677.
  • Carusotto, A.F., Hakim, R.M., Oliveira, R.G., Piranio, A., Coughlan, C.P. and MacDonald, T.J., 2021. Effects of dry needling on muscle spasticity in adults with neurological disorders: a systematic review. Physical Therapy Reviews, pp.1-6.
  • Haser, C.H.R.I.S.T.I.A.N., Stöggl, T.H.O.M.A.S., Kriner, M.O.N.I.K.A., Mikoleit, J., Wolfahrt, B., Scherr, J., Halle, M. and Pfab, F., 2017. Effect of dry needling on thigh muscle strength and hip flexion in elite soccer players. Med Sci Sports Exerc, 49(2), pp.378-383.
  • Ceballos-Laita, L., Jiménez-del-Barrio, S., Marín-Zurdo, J., Moreno-Calvo, A., Marín-Boné, J., Albarova-Corral, M.I. and Estébanez-de-Miguel, E., 2019. Effects of dry needling in HIP muscles in patients with HIP osteoarthritis: a randomized controlled trial. Musculoskeletal Science and Practice, 43, pp.76-82.
  • Geist, K., Bradley, C., Hofman, A., Koester, R., Roche, F., Shields, A., Frierson, E., Rossi, A. and Johanson, M., 2017. Clinical effects of dry needling among asymptomatic individuals with hamstring tightness: a randomized controlled trial. Journal of sport rehabilitation, 26(6), pp.507-517.
  • Osborne, N.J. and Gatt, I.T., 2010. Management of shoulder injuries using dry needling in elite volleyball players. Acupuncture in medicine, 28(1), pp.42-45.
  • Albin, S.R., Koppenhaver, S.L., MacDonald, C.W., Capoccia, S., Ngo, D., Phippen, S., Pineda, R., Wendlandt, A. and Hoffman, L.R., 2020. The effect of dry needling on gastrocnemius muscle stiffness and strength in participants with latent trigger points. Journal of Electromyography and Kinesiology, 55, p.102479.
  • Navarro-Santana, M.J., Sanchez-Infante, J., Gómez-Chiguano, G.F., Cleland, J.A., López-de-Uralde-Villanueva, I., Fernández-de-Las-Peñas, C. and Plaza-Manzano, G., 2020. Effects of trigger point dry needling on lateral epicondylalgia of musculoskeletal origin: a systematic review and meta-analysis. Clinical Rehabilitation, 34(11), pp.1327-1340.
  • Segura-Ortí, E., Prades-Vergara, S., Manzaneda-Piña, L., Valero-Martínez, R. and Polo-Traverso, J.A., 2016. Trigger point dry needling versus strain–counterstrain technique for upper trapezius myofascial trigger points: a randomised controlled trial. Acupuncture in Medicine, 34(3), pp.171-177.
  • Charles, D., Hudgins, T., MacNaughton, J., Newman, E., Tan, J. and Wigger, M., 2019. A systematic review of manual therapy techniques, dry cupping and dry needling in the reduction of myofascial pain and myofascial trigger points. Journal of bodywork and movement therapies, 23(3), pp.539-546.
  • Mullins, J.F., Nitz, A.J. and Hoch, M.C., 2021. Dry needling equilibration theory: A mechanistic explanation for enhancing sensorimotor function in individuals with chronic ankle instability. Physiotherapy theory and practice, 37(6), pp.672-681.
  • Cagnie, B., Castelein, B., Pollie, F., Steelant, L., Verhoeyen, H. and Cools, A., 2015. Evidence for the use of ischemic compression and dry needling in the management of trigger points of the upper trapezius in patients with neck pain: a systematic review. American journal of physical medicine & rehabilitation, 94(7), pp.573-583.
  • Sánchez-Infante, J., Bravo-Sánchez, A., Jiménez, F. and Abián-Vicén, J., 2021. Effects of Dry Needling on Muscle Stiffness in Latent Myofascial Trigger Points: A Randomized Controlled Trial. The Journal of Pain.
  • Alaei, P., Ansari, N.N., Naghdi, S., Fakhari, Z., Komesh, S. and Dommerholt, J., 2020. Dry Needling for Hamstring Flexibility: A Single-Blind Randomized Controlled Trial. Journal of Sport Rehabilitation, 30(3), pp.452-457.
  • Dommerholt, J., 2011. Dry needling—peripheral and central considerations. Journal of Manual & Manipulative Therapy, 19(4), pp.223-227.
  • Tough, E.A., White, A.R., Cummings, T.M., Richards, S.H. and Campbell, J.L., 2009. Acupuncture and dry needling in the management of myofascial trigger point pain: a systematic review and meta-analysis of randomised controlled trials. European Journal of Pain, 13(1), pp.3-10.
  • Ansari, N.N., Alaei, P., Naghdi, S., Fakhari, Z., Komesh, S. and Dommerholt, J., 2020. Immediate effects of dry needling as a novel strategy for hamstring flexibility: a single-blinded clinical pilot study. Journal of sport rehabilitation, 29(2), pp.156-161.
  • Mason, J.S., Crowell, M., Dolbeer, J., Morris, J., Terry, A., Koppenhaver, S. and Goss, D.L., 2016. The effectiveness of dry needling and stretching vs. stretching alone on hamstring flexibility in patients with knee pain: a randomized controlled trial. International journal of sports physical therapy, 11(5), p.672s.
  • Al‐Moraissi, E.A., Alradom, J., Aladashi, O., Goddard, G. and Christidis, N., 2020. Needling therapies in the management of myofascial pain of the masticatory muscles: A network meta‐analysis of randomised clinical trials. Journal of Oral Rehabilitation, 47(7), pp.910-922.
  • Neto, A., Sousa, D., Batanete, M., Caveirinha, V., Moleirinho Alves, P. and Pereira, Â.M., 2019. Effect of the dry needling vs manual myofascial therapy at the trigger points in temporomandibular dysfunction. Annals of Medicine, 51(sup1), pp.226-226.
  • Dunning, J., Butts, R., Bliton, P., Vathrakokoilis, K., Smith, G., Lineberger, C., Eshleman, N., Fernández-de-Las-Peñas, C. and Young, I.A., 2022. Dry needling and upper cervical spinal manipulation in patients with temporomandibular disorder: A multi-center randomized clinical trial. CRANIO®, pp.1-14.
  • Patra, R.C., Kanungo, B. and Mohanty, P., 2020. Dry needling followed by 4 weeks of cranial stabilization exercise on health-related quality of life in patients with temporomandibular disorders: An experimental study. Journal of International Oral Health, 12(6), p.540.
  • Kanungo, B., Patra, R.C., Mohanty, P. and Bawa, P., 2020. Physical Therapy Approach in Conjunction with Dry Needling on Health Related Quality of Life in Patients with Temporomandibular Disorder: A Randomized Control Trial. EXECUTIVE EDITOR, 11(7), p.187.
  • Özden, M.C., Atalay, B., Özden, A.V., Çankaya, A., Kolay, E. and Yıldırım, S., 2020. Efficacy of dry needling in patients with myofascial temporomandibular disorders related to the masseter muscle. CRANIO®, 38(5), pp.305-311.
  • Vier, C., de Almeida, M.B., Neves, M.L., Dos Santos, A.R.S. and Bracht, M.A., 2019. The effectiveness of dry needling for patients with orofacial pain associated with temporomandibular dysfunction: a systematic review and meta-analysis. Brazilian journal of physical therapy, 23(1), pp.3-11.

Needle Bacteria, Gloves, Alcohol & Infection

  • Hoffman, P., 2001. Skin disinfection and acupuncture. Acupuncture in medicine, 19(2), pp.112-116.

  • White, A., 2006. The safety of acupuncture–evidence from the UK. Acupuncture in Medicine, 24(1_suppl), pp.53-57.

  • Gittens, G. and Bunnell, T., 2009. Skin disinfection and its efficacy before administering injections. Nursing standard, 23(39), pp.42-45.

  • Wong, H., Moss, C., Moss, S.M., Shah, V., Halperin, S.A., Ito, S., Mithal, P., Qu, A. and Taddio, A., 2019. Effect of alcohol skin cleansing on vaccination-associated infections and local skin reactions: a randomized controlled trial. Human Vaccines & Immunotherapeutics, 15(4), pp.995-1002

  • Poland, E.G., McGuire, D.K., Ratishvili, T. and Poland, G.A., 2021. The economics of global COVID vaccine administration during a pandemic–Why continue skin alcohol preparation as a costly but ineffective practice?. Vaccine, 39(8), p.1175.

  • Gloves & Alcohol

  • Gloves & Alcohol 2

  • Skin Prep

  • Skin Prep 2

  • Infection

Autonomic Nervous System

  • Li, Q.Q., Shi, G.X., Xu, Q., Wang, J., Liu, C.Z. and Wang, L.P., 2013. Acupuncture effect and central autonomic regulation. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Park, S.U., Jung, W.S., Moon, S.K., Park, J.M., Ko, C.N., Cho, K.H., Kim, Y.S. and Bae, H.S., 2008. Effects of acupuncture on autonomic nervous system in normal subjects under mental stress. The Journal of Korean Medicine, 29(2), pp.107-115.
  • Haker, E., Egekvist, H. and Bjerring, P., 2000. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. Journal of the autonomic nervous system, 79(1), pp.52-59.
  • Bäcker, M., Grossman, P., Schneider, J., Michalsen, A., Knoblauch, N., Tan, L., Niggemeyer, C., Linde, K., Melchart, D. and Dobos, G.J., 2008. Acupuncture in migraine: investigation of autonomic effects. The Clinical journal of pain, 24(2), pp.106-115.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Miyazaki, S., Hisajima, T. and Imai, K., 2019. Effects of acupuncture sensations on transient heart rate reduction and autonomic nervous system function during acupuncture stimulation. Medical acupuncture, 31(3), pp.176-184.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Miyazaki, S., Hisajima, T. and Imai, K., 2019. Effects of acupuncture sensations on transient heart rate reduction and autonomic nervous system function during acupuncture stimulation. Medical acupuncture, 31(3), pp.176-184.
  • Butts, r., dunning, j. And serafino, c., 2020. Dry needling strategies for musculoskeletal conditions: do the number of needles and needle retention time matter? A narrative review of the literature. Journal of bodywork and movement therapies.
  • Castro-Sánchez, A.M., Garcia-López, H., Fernández-Sánchez, M., Perez-Marmol, J.M., Leonard, G., Gaudreault, N., Aguilar-Ferrándiz, M.E. and Matarán-Peñarrocha, G.A., 2020. Benefits of dry needling of myofascial trigger points on autonomic function and photoelectric plethysmography in patients with fibromyalgia syndrome. Acupuncture in Medicine, 38(3), pp.140-149.
  • Loaiza, L. A., Yamaguchi, S., Ito, M., & Ohshima, N. (2002). Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Autonomic Neuroscience : Basic & Clinical, 97(2), 103–109. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12132642.
  • Morikawa, Y., Takamoto, K., Nishimaru, H., Taguchi, T., Urakawa, S., Sakai, S., … Nishijo, H. (2017). Compression at myofascial trigger point on chronic neck pain provides pain relief through the prefrontal cortex and autonomic nervous system: A pilot study. Frontiers in Neuroscience, 11(APR). https://doi.org/10.3389/fnins.2017.00186.
  • Sillevis, R., Van Duijn, J., Shamus, E. and Hard, M., 2021. Time effect for in-situ dry needling on the autonomic nervous system, a pilot study. Physiotherapy theory and practice, 37(7), pp.826-834.
  • Lázaro-Navas, I., Lorenzo-Sánchez-Aguilera, C., Pecos-Martín, D., Jiménez-Rejano, J.J., Navarro-Santana, M.J., Fernández-Carnero, J. and Gallego-Izquierdo, T., 2021. Immediate Effects of Dry Needling on the Autonomic Nervous System and Mechanical Hyperalgesia: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18(11), p.6018.
  • Abbaszadeh-Amirdehi, M., Ansari, N.N., Naghdi, S., Olyaei, G. and Nourbakhsh, M.R., 2017. Therapeutic effects of dry needling in patients with upper trapezius myofascial trigger points. Acupuncture in Medicine, 35(2), pp.85-92.
  • Castro-Sánchez, A.M., Garcia-López, H., Fernández-Sánchez, M., Perez-Marmol, J.M., Leonard, G., Gaudreault, N., Aguilar-Ferrándiz, M.E. and Matarán-Peñarrocha, G.A., 2020. Benefits of dry needling of myofascial trigger points on autonomic function and photoelectric plethysmography in patients with fibromyalgia syndrome. Acupuncture in Medicine, 38(3), pp.140-149.
  • Skorupska, E., Rychlik, M. and Samborski, W., 2015. Intensive vasodilatation in the sciatic pain area after dry needling. BMC complementary and alternative medicine, 15(1), pp.1-9.
  • Clark, N.G., Hill, C.J., Koppenhaver, S.L., Massie, T. and Cleland, J.A., 2021. The effects of dry needling to the thoracolumbar junction multifidi on measures of regional and remote flexibility and pain sensitivity: A randomized controlled trial. Musculoskeletal Science and Practice, 53, p.102366.
  • Sánchez-Infante, J., Navarro-Santana, M.J., Bravo-Sánchez, A., Jiménez-Diaz, F. and Abián-Vicén, J., 2021. Is Dry Needling Applied by Physical Therapists Effective for Pain in Musculoskeletal Conditions? A Systematic Review and Meta-Analysis. Physical Therapy, 101(3), p.pzab070.
  • Eftekharsadat, B., Babaei-Ghazani, A. and Zeinolabedinzadeh, V., 2016. Dry needling in patients with chronic heel pain due to plantar fasciitis: A single-blinded randomized clinical trial. Medical journal of the Islamic Republic of Iran, 30, p.401.
  • Li, Q.Q., Shi, G.X., Xu, Q., Wang, J., Liu, C.Z. and Wang, L.P., 2013. Acupuncture effect and central autonomic regulation. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Mori, H., Nishijo, K., Kawamura, H. and Abo, T., 2002. Unique immunomodulation by electro-acupuncture in humans possibly via stimulation of the autonomic nervous system. Neuroscience Letters, 320(1-2), pp.21-24.
  • Sakatani, K., Kitagawa, T., Aoyama, N. and Sasaki, M., 2010. Effects of acupuncture on autonomic nervous function and prefrontal cortex activity. In Oxygen Transport to Tissue XXXI (pp. 455-460). Springer, Boston, MA
  • Haker, E., Egekvist, H. and Bjerring, P., 2000. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. Journal of the autonomic nervous system, 79(1), pp.52-59.
  • Shu, Q., Wang, H., Litscher, D., Wu, S., Chen, L., Gaischek, I., Wang, L., He, W., Zhou, H., Litscher, G. and Liang, F., 2016. Acupuncture and moxibustion have different effects on fatigue by regulating the autonomic nervous system: a pilot controlled clinical trial. Scientific reports, 6(1), pp.1-11.
  • Matić, Z. and Bojić, T., 2020. Acupuncture, autonomic nervous system and biophysical origin of acupuncture system. Vojnosanitetski pregled, 77(1), pp.79-86.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Hisajima, T. and Imai, K., 2018. Evaluation of autonomic nervous system function using heart rate variability analysis during transient heart rate reduction caused by acupuncture. Medical acupuncture, 30(2), pp.89-95.
  • Napadow, V., Beissner, F., Lin, Y., Chae, Y. and Harris, R.E., 2020. Neural Substrates of Acupuncture: From Peripheral to Central Nervous System Mechanisms. Frontiers in neuroscience, 13, p.1419.
  • An, S. and Keum, D., 2021. Effect of Acupuncture at the Field of the Auricular Branch of the Vagus Nerve on Autonomic Nervous System Change. Journal of Korean Medicine Rehabilitation, 31(2), pp.81-97.
  • Kupari, J. and Ernfors, P., 2020. Pricking into Autonomic Reflex Pathways by Electrical Acupuncture. Neuron, 108(3), pp.395-397.
  • Kurita, K., Kiyomitsu, K., Ogasawara, C., Mishima, R., Ogawa-Ochiai, K. and Tsumura, N., 2019. Effect of acupuncture on the autonomic nervous system as evaluated by non-contact heart rate variability measurement. Artificial Life and Robotics, 24(1), pp.19-23.
  • Dommerholt, J., Hooks, T., Chou, L.W. and Finnegan, M., 2019. A critical overview of the current myofascial pain literature–November 2018. Journal of bodywork and movement therapies, 23(1), pp.65-73.
  • Morikawa, Y., Takamoto, K., Nishimaru, H., Taguchi, T., Urakawa, S., Sakai, S., Ono, T. and Nishijo, H., 2017. Compression at myofascial trigger point on chronic neck pain provides pain relief through the prefrontal cortex and autonomic nervous system: a pilot study. Frontiers in neuroscience, 11, p.186.
  • Dommerholt, J., Mayoral, O. and Thorp, J.N., 2021. A critical overview of the current myofascial pain literature–January 2021.

Scars & Wound Healing

  • Wilgus, T.A., 2020. Inflammation as an orchestrator of cutaneous scar formation: A review of the literature. Plastic and aesthetic research, 7.
  • Cañedo-Dorantes, L. and Cañedo-Ayala, M., 2019. Skin acute wound healing: a comprehensive review. International journal of inflammation, 2019
  • Corr, D.T. and Hart, D.A., 2013. Biomechanics of scar tissue and uninjured skin. Advances in wound care, 2(2), pp.37-43.
  • Cano Sanchez, M., Lancel, S., Boulanger, E. and Neviere, R., 2018. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants, 7(8), p.98.
  • Millán-Rivero, J.E., Martínez, C.M., Romecín, P.A., Aznar-Cervantes, S.D., Carpes-Ruiz, M., Cenis, J.L., Moraleda, J.M., Atucha, N.M. and García-Bernal, D., 2019. Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem cell research & therapy, 10(1), pp.1-14.
  • Krzyszczyk, P., Schloss, R., Palmer, A. and Berthiaume, F., 2018. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Frontiers in physiology, 9, p.419.
  • Opneja, A., Kapoor, S. and Stavrou, E.X., 2019. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thrombosis research, 179, pp.56-63.
  • Deflorin, C., Hohenauer, E., Stoop, R., van Daele, U., Clijsen, R. and Taeymans, J., 2020. Physical management of scar tissue: A systematic review and meta-analysis. The Journal of Alternative and Complementary Medicine, 26(10), pp.854-865.
  • Wilgus, T.A., 2020. Inflammation as an orchestrator of cutaneous scar formation: A review of the literature. Plastic and aesthetic research, 7.
  • Fernandez-de-Las-Penas, C. and Nijs, J., 2019. Trigger point dry needling for the treatment of myofascial pain syndrome: current perspectives within a pain neuroscience paradigm. Journal of pain research, 12, p.1899.
  • Ozer, A.F., Oktenoglu, T., Sasani, M., Bozkus, H., Canbulat, N., Karaarslan, E., Sungurlu, S.F. and Sarioglu, A.C., 2006. Preserving the ligamentum flavum in lumbar discectomy: a new technique that prevents scar tissue formation in the first 6 months postsurgery. Operative Neurosurgery, 59(suppl_1), pp.ONS-126.
  • Chevalier, A., Armstrong, K., Norwood-Williams, C., & Gokal, R. (2016). DC Electroacupuncture Effects on Scars and Sutures of a Patient with Postconcussion Paina. Medical Acupuncture, 28(4), 223–229. https://doi.org/10.1089/acu.2016.1188.
  • Fang, S. (2014). The Successful Treatment of Pain Associated with Scar Tissue Using Acupuncture. Journal of Acupuncture and Meridian Studies, 7(5), 262–264. https://doi.org/10.1016/j.jams.2014.05.001
  • Tuckey, C., Kohut, S. and Edgar, D.W., 2019. Efficacy of acupuncture in treating scars following tissue trauma. Scars, burns & healing, 5, p.2059513119831911.
  • Rozenfeld, E., Sapoznikov Sebakhutu, E., Krieger, Y. and Kalichman, L., 2020. Dry needling for scar treatment. Acupuncture in Medicine, 38(6), pp.435-439.