You've successfully subscribed to Intricate Art Spine & Body Solutions
Great! Next, complete checkout for full access to Intricate Art Spine & Body Solutions
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.
Success! Your billing info is updated.
Billing info update failed.
How to Limit Initial Sympathetic Autonomic Stimulation Following Needle Placement to Avoid Vasovagal Response and Patient Discomfort During Dry Needling Treatment

How to Limit Initial Sympathetic Autonomic Stimulation Following Needle Placement to Avoid Vasovagal Response and Patient Discomfort During Dry Needling Treatment

Immediately upon needle insertion, the sympathetic autonomic nervous system (SANS) elevates above baseline for somewhere around 15 minutes. This has been confirmed in numerous needling and acupuncture studies using microneurography (gold standard ANS test) and heart rate variability (HRV). HRV is less precise, but cheaper and easier to perform. Lots of watches and even some beds have HRV capability nowadays. Acupuncturists figured this out thousands of years ago by trial and error, and for some reason, non-acupuncturists generally disregard this phenomenon. Big mistake. Following the initial sympathetic spike, the SANS drops below baseline and the parasympathetic autonomic nervous system (PANS) elevates above baseline. This shift towards ANS homeostasis should be the primary overall goal of the majority of needle treatments. ANS homeostasis is vital to improve every medical malady I’m aware of.

Remember, just about all PT, AT, OT, DC, psychotherapy, etc., patients present with sympathetic hyperactivity of the CNS / ANS. Also remember, the overall effect of needling, almost regardless of what you do, is SANS depression and PANS elevation. However, if you are working with patients presenting with significant SANS hyperactivity (anxiety, fibromyalgia, hyperalgesia, fear of needles, etc.), the initial sympathetic spike from getting poked with a sharp object is often enough to stimulate a vasovagal response. Vasovagal response and syncope are results of SANS stimulation occurring faster than the ANS can account for and regulate. At a certain sympathetic threshold (everyone is different), the SANS says screw it and just turns off for a sec. This leads to a rapid drop in blood pressure and fainting, in the most extreme cases.

Large nervous system responses are typically more easily elicited in highly athletic and or significantly messed up patients. “Significantly messed up” is a medical term, by the way… Therefore, if you are dealing with a patient presenting with initial, significant SANS hyperactivity, their threshold to reach vasovagal response is diminished. In these circumstances, just a few needles can create an uncomfortable situation for the patient. This is why you should always treat people in a position that, if they were to faint, they would not hit their head or something on the way down. This is the main safety issue with vasovagal responses. The response itself is not dangerous and I believe it to be quite healthy, kinda like an ANS reset, however, it is super uncomfortable and is not something you want to do to your patients.

OK, so, if you are treating someone with hyperactive sympathetics, which covers about everyone we treat, and we know from clinical experience and research that sympathetics spike for about the first 15 minutes following needle insertion before dropping below baseline, it makes sense to target the PANS with the first needles you place. This dramatically limits the amplitude and duration of the sympathetic spike, making treatment more comfortable and effective. I have never read a research article looking at this effect, but I can tell you with absolute certainty that targeting the PANS alone, or in conjunction with and prior to your other needles, limits the sympathetic spike and makes everything better – pain, speed of outcome and overall treatment efficacy. This is why you should always try to leave the needles in for about 20-30 minutes. Allowing the ANS transition from SANS to PANS dominance while the needles are in the body is far more effective, comfortable and lasting than simply poking someone for a few seconds then removing the needles.

Remember, targeting the PANS with needles has a homeostatic effect on the ANS, even if a patient has a rare case of PANS hyperactivity. We know so little about the mechanisms of action that lead to this, but we do know the overall result of PANS needling. There is a huge amount of high-quality research looking at direct vagus nerve (primary PANS nerve) stimulation with a metal cuff placed around the vagus nerves themselves and its effect on anxiety, chronic pain, autoimmune disease, insulin resistance, heart irregularities, and much more.

The most direct PANS treatment we can safely perform is needling the concha of the ears. This is the only piece of skin we have access to that is directly innervated by the vagus nerve, the auricular branch. The second-best place is the sacral plexus, S2-S4, and the third-best is the base of the C2 spinous process or the suboccipital periosteum. I like to connect all these locations to each other. Always add low frequency microcurrent, 1-5 Hz. I like 2 Hz. Low frequency stim produces a strong anti-sympathetic response by inducing a 4x increase in available endogenous opioids from the hypothalamic-pituitary-adrenal (HPA) axis, like beta-endorphin, which decrease sympathetics on their own, along with reducing pain, anxiety and the possibility of vasovagal response.

Along with the HPA axis, the other main portion of the ANS is the gut-brain axis, the brain and the enteric nervous system. Behind the brain, the enteric nervous system has the largest number of neurons per system in our body. This should indicate its importance and we are learning rapidly the vast potential a homeostatic enteric nervous system has on our general wellbeing. The intestines and their microbiota play an important role in many bodily functions, including our immune system, hormones, neurotransmitters, and more. Sympathetic hyperactivity negatively affects the gut-brain axis, limits gastric motility, disrupts serotonergic and dopaminergic neuronal activity, affects mood, and a lot more bad stuff.

By specifically targeting the PANS first, then proceeding with your other needling treatment, you will limit the initial sympathetic spike from being poked by needles. Limiting the duration and amplitude of the sympathetic spike reduces the likelihood of vasovagal response, improves patient comfort, and gives the patient more time with the needles in the body while the SANS is depressed below baseline and the PANS is elevated above baseline. This is a key to providing the most lasting and effective needling treatment possible. Aside from specifically treating certain impairments, making ANS homeostasis a primary goal of needling treatment improves all areas of health, both physical and mental, to the maximum extent possible.

Give this a try, you will see amazing improvements in your patients physical and mental wellbeing compared to what you see without implementing this technique and thought process. Let me know if anyone has any questions about anything.

Jason

Intricate Art Spine & Body Solutions and its affiliates are not responsible for any injury or damage that may result from the use of techniques taught or information being provided. This content is provided for informational purposes only and by participating you are doing so at your own risk.

References

Vagus Nerve Stimulation

  • Sprouse-Blum, A.S., Smith, G., Sugai, D. and Parsa, F.D., 2010. Understanding endorphins and their importance in pain management. Hawaii medical journal, 69(3), p.70.
  • Usichenko, T.I., Dinse, M., Hermsen, M., Witstruck, T., Pavlovic, D. and Lehmann, C., 2005. Auricular acupuncture for pain relief after total hip arthroplasty–a randomized controlled study. Pain, 114(3), pp.320-327.
  • Usichenko, T.I., Kuchling, S., Witstruck, T., Pavlovic, D., Zach, M., Hofer, A., Merk, H., Lehmann, C. and Wendt, M., 2007. Auricular acupuncture for pain relief after ambulatory knee surgery: a randomized trial. Cmaj, 176(2), pp.179-183.
  • Jaić, K.K., Turković, T.M., Pešić, M., Djaković, I., Košec, V. and Košec, A., 2019. Auricular acupuncture as effective pain relief after episiotomy: a randomized controlled pilot study. Archives of gynecology and obstetrics, 300(5), pp.1295-1301
  • Taylor, S.L., Giannitrapani, K.F., Ackland, P.E., Thomas, E.R., Federman, D.G., Holliday, J.R., Olson, J., Kligler, B. and Zeliadt, S.B., 2021. The Implementation and Effectiveness of Battlefield Auricular Acupuncture for Pain. Pain Medicine.
  • Shah, A.N., Moore, C.B. and Brigger, M.T., 2020. Auricular acupuncture for adult tonsillectomy. The Laryngoscope, 130(8), pp.1907-1912.
  • Garner, B.K., Hopkinson, S.G., Ketz, A.K., Landis, C.A. and Trego, L.L., 2018. Auricular acupuncture for chronic pain and insomnia: a randomized clinical trial. Medical acupuncture, 30(5), pp.262-272.
  • Kang, H.R., Lee, Y.S., Kim, H.R., Kim, E.J., Kim, K.H., Kim, K.S., Jung, C.Y. and Lee, J.K., 2017. A clinical study of electroacupuncture and auricular acupuncture for abdominal pain relief in patients with pancreatitis: A pilot study. Korean Journal of Acupuncture, 34(1), pp.47-55.
  • Moura, C.D.C., Chaves, E.D.C.L., Cardoso, A.C.L.R., Nogueira, D.A., Azevedo, C. and Chianca, T.C.M., 2019. Auricular acupuncture for chronic back pain in adults: a systematic review and metanalysis. Revista da Escola de Enfermagem da USP, 53.
  • Tsai, S.L., Fox, L.M., Murakami, M. and Tsung, J.W., 2016. Auricular acupuncture in emergency department treatment of acute pain. Annals of emergency medicine, 68(5), pp.583-585.
  • Yeh, C.H., Chiang, Y.C., Hoffman, S.L., Liang, Z., Klem, M.L., Tam, W.W., Chien, L.C. and Suen, L.K.P., 2014. Efficacy of auricular therapy for pain management: a systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2014.
  • Sator-Katzenschlager, S.M., Szeles, J.C., Scharbert, G., Michalek-Sauberer, A., Kober, A., Heinze, G. and Kozek-Langenecker, S.A., 2003. Electrical stimulation of auricular acupuncture points is more effective than conventional manual auricular acupuncture in chronic cervical pain: a pilot study. Anesthesia & Analgesia, 97(5), pp.1469-1473.
  • Usichenko, T.I., Lehmann, C. and Ernst, E., 2008. Auricular acupuncture for postoperative pain control: a systematic review of randomised clinical trials. Anaesthesia, 63(12), pp.1343-1348.
  • Johnson, R.L. and Wilson, C.G., 2018. A review of vagus nerve stimulation as a therapeutic intervention. Journal of inflammation research, 11, p.203.

Electrical Needling

  • Dunning, J., Butts, R., Henry, N., Mourad, F., Brannon, A., Rodriguez, H., Young, I., Arias-Buría, J.L. and Fernández-de-Las-Peñas, C., 2018. Electrical dry needling as an adjunct to exercise, manual therapy and ultrasound for plantar fasciitis: A multi-center randomized clinical trial. PloS one, 13(10), p.e0205405.
  • Dunning, J., Butts, R., Zacharko, N., Fandry, K., Young, I., Wheeler, K., Day, J. and Fernández-de-Las-Peñas, C., 2021. Spinal manipulation and perineural electrical dry needling in patients with cervicogenic headache: a multicenter randomized clinical trial. The Spine Journal, 21(2), pp.284-295.
  • Ghaffari, M.S., Shariat, A., Honarpishe, R., Hakakzadeh, A., Cleland, J.A., Haghighi, S. and Barghi, T.S., 2019. Concurrent effects of dry needling and electrical stimulation in the management of upper extremity hemiparesis. Journal of acupuncture and meridian studies, 12(3), pp.90-94.
  • Brennan, K., Elifritz, K.M., Comire, M.M. and Jupiter, D.C., 2021. Rate and maintenance of improvement of myofascial pain with dry needling alone vs. dry needling with intramuscular electrical stimulation: a randomized controlled trial. Journal of Manual & Manipulative Therapy, 29(4), pp.216-226.
  • Fernández-Carnero, J., 2021. Effectiveness of Dry Needling with Percutaneous Electrical Nerve Stimulation of High Frequency Versus Low Frequency in Patients with Myofascial Neck Pain. Pain physician, 24, pp.135-143.
  • WALSH, S., GOULT, C. and GILLETT, B., 2021. Spinal Manipulation and Electrical Dry Needling in Patients With Subacromial Pain Syndrome: A Multicenter Randomized Clinical Trial. journal of orthopaedic & sports physical therapy, 51(2), p.73.
  • Dunning, J., 2019. Effectiveness of Electrical Dry Needling for Lower Extremity Pain Disorders.
  • Hadizadeh, M., Tajali, S.B., Moghadam, B.A., Jalaei, S. and Bazzaz, M., 2022. Effects of Intramuscular Electrical Stimulation through Dry Needling on Pain and Dysfunction Following Trigger Points in Upper Trapezius Muscle: A Double-blind Randomized Controlled Trial. Journal of Modern Rehabilitation.
  • Ahmed, A.F., Elgayed, S.S. and Ibrahim, I.M., 2012. Polarity effect of microcurrent electrical stimulation on tendon healing: biomechanical and histopathological studies. Journal of Advanced Research, 3(2), pp.109-117.
  • Yazdan-Shahmorad, A., Kipke, D.R. and Lehmkuhle, M.J., 2011. Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex. Brain stimulation, 4(4), pp.228-241.
  • Gentzkow, G.D., 1993. Electrical stimulation to heal dermal wounds. The Journal of dermatologic surgery and oncology, 19(8), pp.753-758.
  • Hayashi, K. and Ninjouji, T., 2004, September. Two-point discrimination threshold as a function of frequency and polarity at fingertip by electrical stimulation. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 2, pp. 4256-4259). IEEE.
  • Demir, H., Balay, H. and Kirnap, M., 2004. A comparative study of the effects of electrical stimulation and laser treatment on experimental wound healing in rats. Journal of rehabilitation Research & development, 41(2).
  • Balakatounis, K.C. and Angoules, A.G., 2008. Low-intensity electrical stimulation in wound healing: review of the efficacy of externally applied currents resembling the current of injury. Eplasty, 8.
  • Ashrafi, M., Alonso‐Rasgado, T., Baguneid, M. and Bayat, A., 2016. The efficacy of electrical stimulation in experimentally induced cutaneous wounds in animals. Veterinary dermatology, 27(4), pp.235-e57.
  • Krause, B. and Cohen Kadosh, R., 2014. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in systems neuroscience, 8, p.25.
  • Asadi, M.R., Torkaman, G. and Hedayati, M., 2011. Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound. J Rehabil Res Dev, 48(3), pp.195-201.
  • Deriu, F., Tolu, E. and Rothwell, C., 2003. A short latency vestibulomasseteric reflex evoked by electrical stimulation over the mastoid in healthy humans. The Journal of physiology, 553(1), pp.267-279.
  • Wang, J., Wang, H., Thakor, N.V. and Lee, C., 2019. Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS nano, 13(3), pp.3589-3599.
  • Nussbaum, E.L., Houghton, P., Anthony, J., Rennie, S., Shay, B.L. and Hoens, A.M., 2017. Neuromuscular electrical stimulation for treatment of muscle impairment: critical review and recommendations for clinical practice. Physiotherapy Canada, 69(5), pp.1-76.
  • Asadi, M.R. and Torkaman, G., 2014. Bacterial inhibition by electrical stimulation. Advances in wound care, 3(2), pp.91-97.
  • Snyder, A.R., Perotti, A.L., Lam, K.C. and Bay, R.C., 2010. The influence of high-voltage electrical stimulation on edema formation after acute injury: a systematic review. Journal of sport rehabilitation, 19(4), pp.436-451.
  • Feger, M.A., Goetschius, J., Love, H., Saliba, S.A. and Hertel, J., 2015. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review. Physical Therapy in Sport, 16(4), pp.361-369.
  • Hamid, S. and Hayek, R., 2008. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. European Spine Journal, 17(9), pp.1256-1269.
  • Reilly, J.P., 2012. Applied bioelectricity: from electrical stimulation to electropathology. Springer Science & Business Media.
  • Gordon, T., Amirjani, N., Edwards, D.C. and Chan, K.M., 2010. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Experimental neurology, 223(1), pp.192-202.
  • Hwang, I.H. and Thompson, J.M., 2001. The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat science, 58(2), pp.135-144.

Autonomic Nervous System

  • Li, Q.Q., Shi, G.X., Xu, Q., Wang, J., Liu, C.Z. and Wang, L.P., 2013. Acupuncture effect and central autonomic regulation. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Park, S.U., Jung, W.S., Moon, S.K., Park, J.M., Ko, C.N., Cho, K.H., Kim, Y.S. and Bae, H.S., 2008. Effects of acupuncture on autonomic nervous system in normal subjects under mental stress. The Journal of Korean Medicine, 29(2), pp.107-115.
  • Haker, E., Egekvist, H. and Bjerring, P., 2000. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. Journal of the autonomic nervous system, 79(1), pp.52-59.
  • Bäcker, M., Grossman, P., Schneider, J., Michalsen, A., Knoblauch, N., Tan, L., Niggemeyer, C., Linde, K., Melchart, D. and Dobos, G.J., 2008. Acupuncture in migraine: investigation of autonomic effects. The Clinical journal of pain, 24(2), pp.106-115.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Miyazaki, S., Hisajima, T. and Imai, K., 2019. Effects of acupuncture sensations on transient heart rate reduction and autonomic nervous system function during acupuncture stimulation. Medical acupuncture, 31(3), pp.176-184.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Miyazaki, S., Hisajima, T. and Imai, K., 2019. Effects of acupuncture sensations on transient heart rate reduction and autonomic nervous system function during acupuncture stimulation. Medical acupuncture, 31(3), pp.176-184.
  • Butts, r., dunning, j. And serafino, c., 2020. Dry needling strategies for musculoskeletal conditions: do the number of needles and needle retention time matter? A narrative review of the literature. Journal of bodywork and movement therapies.
  • Castro-Sánchez, A.M., Garcia-López, H., Fernández-Sánchez, M., Perez-Marmol, J.M., Leonard, G., Gaudreault, N., Aguilar-Ferrándiz, M.E. and Matarán-Peñarrocha, G.A., 2020. Benefits of dry needling of myofascial trigger points on autonomic function and photoelectric plethysmography in patients with fibromyalgia syndrome. Acupuncture in Medicine, 38(3), pp.140-149.
  • Loaiza, L. A., Yamaguchi, S., Ito, M., & Ohshima, N. (2002). Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Autonomic Neuroscience : Basic & Clinical, 97(2), 103–109. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12132642.
  • Morikawa, Y., Takamoto, K., Nishimaru, H., Taguchi, T., Urakawa, S., Sakai, S., … Nishijo, H. (2017). Compression at myofascial trigger point on chronic neck pain provides pain relief through the prefrontal cortex and autonomic nervous system: A pilot study. Frontiers in Neuroscience, 11(APR). https://doi.org/10.3389/fnins.2017.00186.
  • Sillevis, R., Van Duijn, J., Shamus, E. and Hard, M., 2021. Time effect for in-situ dry needling on the autonomic nervous system, a pilot study. Physiotherapy theory and practice, 37(7), pp.826-834.
  • Lázaro-Navas, I., Lorenzo-Sánchez-Aguilera, C., Pecos-Martín, D., Jiménez-Rejano, J.J., Navarro-Santana, M.J., Fernández-Carnero, J. and Gallego-Izquierdo, T., 2021. Immediate Effects of Dry Needling on the Autonomic Nervous System and Mechanical Hyperalgesia: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18(11), p.6018.
  • Abbaszadeh-Amirdehi, M., Ansari, N.N., Naghdi, S., Olyaei, G. and Nourbakhsh, M.R., 2017. Therapeutic effects of dry needling in patients with upper trapezius myofascial trigger points. Acupuncture in Medicine, 35(2), pp.85-92.
  • Castro-Sánchez, A.M., Garcia-López, H., Fernández-Sánchez, M., Perez-Marmol, J.M., Leonard, G., Gaudreault, N., Aguilar-Ferrándiz, M.E. and Matarán-Peñarrocha, G.A., 2020. Benefits of dry needling of myofascial trigger points on autonomic function and photoelectric plethysmography in patients with fibromyalgia syndrome. Acupuncture in Medicine, 38(3), pp.140-149.
  • Skorupska, E., Rychlik, M. and Samborski, W., 2015. Intensive vasodilatation in the sciatic pain area after dry needling. BMC complementary and alternative medicine, 15(1), pp.1-9.
  • Clark, N.G., Hill, C.J., Koppenhaver, S.L., Massie, T. and Cleland, J.A., 2021. The effects of dry needling to the thoracolumbar junction multifidi on measures of regional and remote flexibility and pain sensitivity: A randomized controlled trial. Musculoskeletal Science and Practice, 53, p.102366.
  • Sánchez-Infante, J., Navarro-Santana, M.J., Bravo-Sánchez, A., Jiménez-Diaz, F. and Abián-Vicén, J., 2021. Is Dry Needling Applied by Physical Therapists Effective for Pain in Musculoskeletal Conditions? A Systematic Review and Meta-Analysis. Physical Therapy, 101(3), p.pzab070.
  • Eftekharsadat, B., Babaei-Ghazani, A. and Zeinolabedinzadeh, V., 2016. Dry needling in patients with chronic heel pain due to plantar fasciitis: A single-blinded randomized clinical trial. Medical journal of the Islamic Republic of Iran, 30, p.401.
  • Li, Q.Q., Shi, G.X., Xu, Q., Wang, J., Liu, C.Z. and Wang, L.P., 2013. Acupuncture effect and central autonomic regulation. Evidence-Based Complementary and Alternative Medicine, 2013.
  • Mori, H., Nishijo, K., Kawamura, H. and Abo, T., 2002. Unique immunomodulation by electro-acupuncture in humans possibly via stimulation of the autonomic nervous system. Neuroscience Letters, 320(1-2), pp.21-24.
  • Sakatani, K., Kitagawa, T., Aoyama, N. and Sasaki, M., 2010. Effects of acupuncture on autonomic nervous function and prefrontal cortex activity. In Oxygen Transport to Tissue XXXI (pp. 455-460). Springer, Boston, MA
  • Haker, E., Egekvist, H. and Bjerring, P., 2000. Effect of sensory stimulation (acupuncture) on sympathetic and parasympathetic activities in healthy subjects. Journal of the autonomic nervous system, 79(1), pp.52-59.
  • Shu, Q., Wang, H., Litscher, D., Wu, S., Chen, L., Gaischek, I., Wang, L., He, W., Zhou, H., Litscher, G. and Liang, F., 2016. Acupuncture and moxibustion have different effects on fatigue by regulating the autonomic nervous system: a pilot controlled clinical trial. Scientific reports, 6(1), pp.1-11.
  • Matić, Z. and Bojić, T., 2020. Acupuncture, autonomic nervous system and biophysical origin of acupuncture system. Vojnosanitetski pregled, 77(1), pp.79-86.
  • Uchida, C., Waki, H., Minakawa, Y., Tamai, H., Hisajima, T. and Imai, K., 2018. Evaluation of autonomic nervous system function using heart rate variability analysis during transient heart rate reduction caused by acupuncture. Medical acupuncture, 30(2), pp.89-95.
  • Napadow, V., Beissner, F., Lin, Y., Chae, Y. and Harris, R.E., 2020. Neural Substrates of Acupuncture: From Peripheral to Central Nervous System Mechanisms. Frontiers in neuroscience, 13, p.1419.
  • An, S. and Keum, D., 2021. Effect of Acupuncture at the Field of the Auricular Branch of the Vagus Nerve on Autonomic Nervous System Change. Journal of Korean Medicine Rehabilitation, 31(2), pp.81-97.
  • Kupari, J. and Ernfors, P., 2020. Pricking into Autonomic Reflex Pathways by Electrical Acupuncture. Neuron, 108(3), pp.395-397.
  • Kurita, K., Kiyomitsu, K., Ogasawara, C., Mishima, R., Ogawa-Ochiai, K. and Tsumura, N., 2019. Effect of acupuncture on the autonomic nervous system as evaluated by non-contact heart rate variability measurement. Artificial Life and Robotics, 24(1), pp.19-23.
  • Dommerholt, J., Hooks, T., Chou, L.W. and Finnegan, M., 2019. A critical overview of the current myofascial pain literature–November 2018. Journal of bodywork and movement therapies, 23(1), pp.65-73.
  • Morikawa, Y., Takamoto, K., Nishimaru, H., Taguchi, T., Urakawa, S., Sakai, S., Ono, T. and Nishijo, H., 2017. Compression at myofascial trigger point on chronic neck pain provides pain relief through the prefrontal cortex and autonomic nervous system: a pilot study. Frontiers in neuroscience, 11, p.186.
  • Dommerholt, J., Mayoral, O. and Thorp, J.N., 2021. A critical overview of the current myofascial pain literature–January 2021.